Practice Assignment-I

Very Short Answer Type Questions

- 1. At the point (2,1), find the slope of the curve $x^6y^6 = 64$.
- 2. Find the derivative of $\sin^{-1}(x^3)$.
- 3. Evaluate $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$.
- 4. If "c" is a number that satisfies the conclusions of the Mean Value theorem for $x^3 2x^2$ on the interval [0,2], find the value of "c".
- 5. If $f(x) = \sqrt{9-x}$; $g(x) = x^3 + 1$, find $f \circ g(x)$.
- 6. If $f(x) = (x+1)e^x$, find the intervals in which the function is increasing.
- 7. Write the equation of the tangent to the curve $x^3 3x + 2$ at the point (2,4).
- 8. Find the stationary points of the function $f(x) = (x-2)\frac{2}{3}(2x+1)$
- 9. Find the maximum value of the function $f(x) = \sin 2x$ on the interval $\left[0, \frac{\pi}{2}\right]$.
- 10. If $f(x) = x^4$, defined from $R \to R$, is this function one one?
- 11. If given that $f(x) = 16x^2 + 8x 14$, is an invertible function, find its inverse.
- 12. Differentiate $\cos(x^x)$ with respect to x^x .
- 13. Find the slope of the tangent to the curve represented by $x = t^2 + 3t 8$; $y = 2t^2 2t 5$ at (2,-1).
- 14. If $y = \tan^{-1} \frac{4x}{1+5x^2} \tan^{-1} \frac{2-3x}{3+2x}$, show that $\frac{dy}{dx} = \frac{5}{1+25x^2}$.
- 15. Differentiate $\log x$ with respect to e^{x} .
- 16. Differentiate $\tan^{-1} \frac{2x}{1-x^2}$ with respect to $\sin^{-1} \frac{2x}{1+x^2}$.
- 17. If $y = e^{x + e^{x} + e^{x} + e^{x} + \dots + e^{x}}$, prove that $\frac{dy}{dx} = \frac{y}{1 y}$.

- 18. If $y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + \dots \infty}}}$, prove that $\frac{dy}{dx} = \frac{\sin x}{1 2y}$.
- 19. If $y = \sqrt{x} + \frac{1}{\sqrt{x}}$, show that $2x\frac{dy}{dx} + y = 2\sqrt{x}$.
- 20. If $y = \sec^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right)$, show that $\frac{dy}{dx} = 0$.
- 21. Differentiate $\tan^{-1} \left(\frac{\frac{1}{x^3 + a^3}}{\frac{1}{1 x^3 a^3}} \right)$ with respect to "x"
- 22. If $y = \sin^2 x^2$, find $\frac{dy}{dx}$.
- 23. If $y = \sqrt{x+y}$, prove that $\frac{dy}{dx} = \frac{1}{2y-1}$.
- 24. Find $\frac{dy}{dx}$, if $x = a \log t$; $y = b \sin t$.
- 25. Find $\frac{dy}{dx}$, if $x = \sqrt{\sin 2\theta}$; $y = \sqrt{\cos 2\theta}$.
- 26. If $x = at^2$, y = 2at find $\frac{d^2y}{dx^2}$.
- 27. Show that the function f(x) = 2x + 3 is continuous at x = -4.
- 28. Show that the function |x-4| is a continuous function.
- 29. Show that the function $f(x) = \begin{cases} \frac{x}{\sin 3x}, & x \neq 0 \\ 3, & x = 0 \end{cases}$ is discontinuous at x=0
- 30. If the function $f(x) = \begin{cases} \frac{\sin^2 kx}{x^2}, & x \neq 0 \\ 1, & x = 0 \end{cases}$, is continuous at x=0, find "k".
- 31. Show that the function $f(x) = \sin|x|$ is a continuous function.
- 32. Show that the function $f(x) = \frac{1}{x-5}$ is a continuous function.
- 33. If $\tan^{-1} 3 + \tan^{-1} x = \tan^{-1} 8$, then find x.

- 34. Show that the function $f(x) = \sin^2 x + x^2 2x$ is continuous at x=0.
- 35. Evaluate a) $\cos^{-1} \left(\cos \frac{7\pi}{6} \right)$ b) $\tan^{-1} \left(\tan \frac{3\pi}{4} \right)$
- 36. Find the Principal value of $\cot^{-1}(-\sqrt{3})$.
- 37. Simplify $\sin^{-1} \left(\frac{\sin x + \cos x}{\sqrt{2}} \right)$.
- 38. Find the value of a) $\cot(\tan^{-1} a + \cot^{-1} a)$ b) $\cos(\sec^{-1} x + \cos ec^{-1} x), |x| \ge 1$
- 39. Find the value of $\cos^{-1}\left(\cos\frac{5\pi}{3}\right) + \sin^{-1}\left(\sin\frac{5\pi}{3}\right)$.
- 40. The function $f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0 \\ \frac{k}{2}, & x = 0 \end{cases}$ is continuous at "x = 0". Find "k"
- 41. Differentiate $\cos^{-1}\left(\frac{2x}{1+x^2}\right)$, -1 < x < 1 with respect to "x"
- 42. Differentiate $\tan^{-1}(\sqrt{1+x^2}-x)$, $x \in \mathbb{R}$ with respect to "x"
- 43. Differentiate with respect to "x": $\tan^{-1}\left(\frac{a+x}{1-ax}\right)$
- 44. Differentiate with respect to "x": $\tan^{-1} \left(\frac{\cos x}{1 + \sin x} \right)$
- 45. If $\sin y = x \sin(a+y)$, find $\frac{dy}{dx}$.