Assignment No. 6

Application of Derivatives

- 1. Water is dripping out from a conical funnel of semi vertical angle $\frac{\pi}{4}$ at a uniform speed of 2 cm^3 / sec through a tiny hole at the vertex of the bottom. When the slant height of water is 4cm, find the rate of decrease of slant height of the water.
- 2. A man is moving away from a tower 49.6 m high at the rate of 2 m/s. Find the rate at which the angle of elevation of the top of the tower is changing, when he is at a distance of 36 m from the foot of the tower. Assume that the eye level of the man is 1.6 m from the ground.
- 3. Evaluate following up to three decimal places using differentiation: $\sqrt{25.2}$, $\sqrt[3]{29}$, $\sqrt{0.037}$
- 4. Find the intervals in which the function $f(x) = \log(1+x) \frac{2x}{2+x}$ increasing or decreasing.
- 5. Find the intervals in which the function $f(x) = (x+1)^3 (x-3)^3$ is increasing or decreasing. Also find the points at which the function has local maxima, local minima and the point of inflexion.
- 6. Find all the points of local maximum and minimum and the corresponding maximum and minimum values of the following function $\frac{3}{4}x^4 8x^3 + \frac{45}{2}x^2 + 105$.
- 7. Find the point on the curve $y^2 = 4x$ which is nearest to the point (2,-8)
- 8. Find the equation of the tangent to the curve $y = (x^3 1)(x 2)$ at the points where the curve cuts the x -axis.
- 9. Find the intervals in which the function $f(x) = 2x^3 9x^2 + 12x + 15$ is increasing and decreasing.
- 10. Separate $\left[0, \frac{\pi}{2}\right]$ into sub intervals in which $f(x) = \sin^4 x + \cos^4 x$ is increasing or decreasing.

11. Find the points of local maxima and local minima and also the local maximum and local minimum values of the following functions : $(i) f(x) = 2\cos x + x, x \in (0, \pi)$

$$(ii) f(x) = 2\sin x - x, x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

- 12. Find the equation of the tangent and normal to the curve $x=1-\cos\theta; \ y=\theta-\sin\theta$ at $\theta=\frac{\pi}{4}$
- 13. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of cone.
- 14. An open box with a square base is to be made of given iron sheet of area 27 sq.m. Show that the maximum volume of the box is 13.5 cu. m.
- 15. Show that the triangle of maximum area that can be inscribed in a given circle is an equilateral triangle.